
Google Star – Project Presentation

CS8621: Advanced Computer Architecture

Course Instructor : Dr.Ted Pedersen

Team : Fluminense

Aneerudh Naik

Ankur Nepalia

Prafulla Bhalekar

Sarika Mehta

Architecture

Unigram
Network

Read Bi- gram

Search in Unigram
Network

Calc Assoc
Score

>= Assoc
weight

Create
Network

Bi-gram
Network

Search
Network

Disjoint
N/w search

Weight >= Uni Cut

Unigram and Associativity Cut

� Overview :

�Alpha Stage – to store the network in files.

�Beta Stage – to handle the unigram cut-off

�Final Stage – to handle the associativity cut-

off and modifications in the unigram network.

Alpha Stage

� Storing the network in the files

� Locating and Creating Directories.

� Creating Files.

� Traversing the network.

� Writing to the files.

Note : This has been dropped from the current
implementation considering the file I/O cost.

Beta Stage

� Handling unigram cut

� Creating unigram network on processes 0 and 1(due to
memory limitations)9

� Split vocab in two files

� Create Hash tables on 0 and 1

� Read and Hash each unigram

� Attach unigram node to the binary search tree if the
weight is >= unigram cut

� Remove temporary files.

Beta Stage contd...

� When the bigram file is being read, accept each word
and pass it on to search function

� Search function : (Tree traversals)9

� Proc 0 :

� Searches it's own.

� Sends string to proc1

� Searches for all other processors.

� Proc 1:

� Same as 0

� Other Processors

� Just send their unigrams to 0 and 1.

� Accept the return value and send to the create network.

Final Stage

� Unigram network

� Was modified to hold and return unigram weights

� Handling Associativity cut

� Accept bigram weight

� Accept weights of searched unigram

� Calculate Associativity cut-off

Bi-Gram Network Creation

Data structure

0

1

2

3

4

5

The

0

1

2

Sat

Cat

Weather

Bat

0

1

2

First String Hash
Table

Second
String Hash
Table Binary Search Tree :

Second String

Binary Search Tree :
First String

Insertion Method

� The Apple 100 (Bi-gram)

� ‘The -> Apple’ linked as front entry
� Front Flag : 1

� ‘Apple -> The’ linked as back entry
� Back Flag : 1

� Helps get back connected strings during search

� Short Algorithm :
� Hash the String

� Access hash table location

� Insert into binary search tree

Hash (“The”) = 2

0

1

2

3

4

5

Wait

Hash Table For
First String

Already Existing
Node At Hash
Location 2

The : Inserted

0

1

2

3

4

5

Wait

Left Link

The

0

1

2

Hash Table For
First String

Already Existing
Node At Hash
Location 2

Apple : Hash = 1

0

1

2

3

4

5

Wait

Left Link

The

0

1

2

Aim

Already
Existing Node
At Hash
Location 1

Apple : Inserted

0

1

2

3

4

5

Wait

Left Link

The

0

1

2

Aim

Apple

Right
Link

Search Method : ‘The’

0

1

2

3

4

5

Weather The

Lion

Bat

Yes

Search Method : ‘The’

0

1

2

3

4

5

Weather The

Lion

Bat

Yes

Left
Link Right Link

The

0

1

2

Bat

Wall

Apple

Cat

Pick

tall

Weather

The Node Structure

Second String hash
table Second String Binary

Search Trees

Linked List : Connected Strings

Apple Bat Cat Pick Wall tall

Weather

All Connected String Sent to Process 0 and Linked list of all connected
strings created

Linked List Created On Process 0

Front Connection : Front Flag = 1 Back Connections : Back Flag = 1

Searching Strings

� Read the target-list file one line at a time.

� Suppose the target string is ‘The’.

� Create a data structure for storing all the connected
strings to the target string ‘The’, both in front and
back.

Creating Target-string network

The Front Connected StringsBack Connected Strings

Search String: ‘The’ Path Length: 1

� Passing the target string to the search function.

� Returns back a connected link list of all the sub-strings to
the target string

TheLift Get Ran Cat Dog Big

Front connected sub-stringsBack connected sub-strings Target-String

Creating the sub-string network

� Passing the substrings connected to the target string to
the search function.

� Front Connected Sub-strings to ‘The’

� Back Connected Sub-strings to ‘The’

Cat Dog Big

Lift Get Ran

Creating the sub-string network…

� This again gives back all the connected strings to the
substring passed to the search function in the form of a
connected link-list.

� This process is done for both the front and back
connected substrings to the target string ‘The’.

Search String: ‘The’ Path Length: 2

B
ig

F
a
t

R
a
t

B
la
c
k

w
h
ite

B
o
y

Y
o
u

TheLift Get Ran Cat Dog Big

B
a
t

B
a
ll

I
W
e

M
e

Y
o
u

Front Connected StringsBack Connected Strings

B
a
ck
 C
o
n
n
e
cte
d
 S
u
b
-strin

g
s

F
ro
n
t C
o
n
n
e
cte
d
 S
u
b
-S
trin

g
s

Display Search String Network

� The target-string network creation is limited by the
path-length.

� Recursively displaying the target-string network both
in front and back directions.

Hashing Function

4 Ideal Characteristics:

1) Hash value is fully determined by the data being
hashed.

2) Hash function uses all the input data.

3) Hash function "uniformly" distributes data across
entire set of possible hash values.

4) Hash function generates very different hash values
for similar strings.

� djb2 hash function has been implemented

� Ideally suited to string hashing

� Supports any character.

� Fast.

� Robust.

� Uses XOR function.

Hashing Function…

Hash

Table

[0]

Hash

Table

[1]

[0]

…

[0]

…

[n-1]

[n-1]

[0]

…

[n-1]

Disjoint Networks

Creation of disjoint networks:

� Each processor creates its own disjoint
network files.

� Files created are network and stat files.

� Network files hold actual data (words).

� Stat files hold number of nodes and number
of edges.

� Search for creating networks starts at the root.

� Root is traversed to find all connected nodes.

� Once, all strings connected to the root are
traversed, that entire network is separated or
deducted from the unigram cut.

� Process is repeated for each root, in the remaining
networks.

� What results is the set of disjoint networks.

Disjoint Networks…

� Each network file holding nodes, from
each processor, is compared to every
other processor’s network file.

� Nodes are inserted into arrays and
compared.

� If any string is found common among
them, then total network count is
reduced.

Disjoint Networks…

� This means those 2 networks are, in
fact, joint.

� Then, nodes in the files with a common
word are added.

� Count of common words is subtracted.

� Edges are added, as the joint network
contains edges from both the networks.

Disjoint Networks…

Implementation Example

� Network files named according to
following convention:

process 0: 000netw000, 000netw001,…
process 1: 001netw000, 001netw001,…

…

process i: 00 i netw000, 00 i netw001,…

� Stat files named similarly,

process 0: 000stat000, 000stat001,…
process 1: 001stat000, 001stat001,…

…

process i: 00 i stat000, 00 i stat001,…

Implementation Example…

Acknowledgments

Dr. Ted Pedersen

Thank You…

