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Abstract 

 

The project aims at building a co-occurrence network from the Google n-gram data using 

the C programming language, MPI and OpenMP. The main goal is to be able to access 

the user defined data element combinations efficiently from the co-occurrence network 

for the purpose of some custom application. This could be either speech recognition or 

predicting certain trends in internet searching based on the frequency of the data returned 

by each search query in the Google search engine. 

 

The amount of data provided in the dataset is very large and a lot of correlations can be 

drawn from this set. One particular operation that is being performed is checking how 

many words do form a network. Another operation could be to check how many disjoint 

networks for sub domains in terms of word patterns and search queries.  

 

Ideally, the objective would be to specify a word and a number. This would search for the 

particular words and return all the words that are connected to it (in forward and reverse 

order) up to the specified number of nodes. Another variation is to print the disjoint 

networks (if any) present in the dataset. These would be the words that form a network 

but are connected to only a certain subset of words from the dataset. There can possibly 

be multiple disjoint networks in the dataset. 
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1. Introduction 

 

1.1 

The Google n-gram dataset is English words along with the frequency of occurrence, 

provided by Google Inc. The length of the n-gram ranges varies from unigram to five –

grams. Suitable operations performed on the data could reveal possible patterns that 

provide new insights in statistical language modeling or for other uses.  

The data was generated from approximately 1 trillion word tokens of text from publicly 

accessible web pages. All text provided is in the UTF-8 text encoding format. 

 

Tokenization of data elements: 

 

The data was tokenized in a manner similar to the tokenization of the Wall Street Journal 

portion of the Penn Treebank. Notable exceptions include the following: 

 

1. Hyphenated word are usually separated, and hyphenated numbers usually form one 

token. 

 

2. Sequences of numbers separated by slashes (e.g. in dates) form one token. 

 

3. Sequences that look like urls or email addresses form one token. 

Data sizes and specifications: 

Number of tokens:        1,024,908,267,229 



 5 

Number of sentences:        95,119,665,584 

Number of unigrams:                13,588,391 

Number of bi-grams:               314,843,401 

Number of tri-grams:              977,069,902 

Number of four-grams:        1,313,818,354 

Number of five-grams:        1,176,470,663
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1.2  Co-occurrence Networks: 

 

In general, Co-occurrence networks are abstractions of data to gain insights into 

relationships among certain generic types of variables. The simple idea is that if the 

occurrence pattern of such variables is highly correlated, i.e. they occur multiple times 

within the dame data set, they are in some way related to each other. For each pair of 

objects, we count the number of co-occurrences. This data can be visualized as a graph, 

where nodes correspond to objects and edges describe found co-occurrences. 

 

Usually, the co-occurring words have a weight associated with their occurrence. This 

might be the number of times the pair of words actually occurs or some other 

mathematical quantity dependant specifically on the particular domain in which the co-

occurrence network is being used.  

In terms of implementations, the network can be implemented in terms of either a 

weighted or non weighted graph. 
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1.3 Previous Work: 

 

The following papers were referred to by the Fluminense team for gaining background 

knowledge and information of the general topics related to the Google Star project. 

  

1.3.1  “Co-occurrence Vectors from Corpora v/s Distance Vectors from Dictionaries”. 

 

In this experiment a comparison was made of vectors from large text corpora and of 

vectors derived by measuring the inter word distances in dictionary definitions. The 

suggestion is that distance vectors contain some different semantic information that 

provided by co-occurrence vectors. 

 

This paper showed by experiments that learning positive or negative meanings from 

example words, distance vectors provide a higher precision than co-occurrence vectors. 

Therefore there exists a possibility that distance vectors have some other semantic 

information as compared to co-occurrence networks. This increases the possibility that 

more information and trend predictions in machine learning and artificial intelligence 

could use distance vectors as the preferred input as compared to co – occurrence vectors. 
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1.3.2  “Choosing the Word Most Typical in Context Using a Lexical Co-occurrence 

Network”. 

 

This paper is about predicting the best possible synonym for a particular word, and doing 

it efficiently. 

The author explores the possibility of using second order co-occurrence relations. By 

experimentation, it was proved that employing second order co-occurrence networks 

improved the reach of the lexical choice program.  

 

1.3.3  “Discovering Word Senses from a Network of Lexical Co-occurrences”. 

 

This paper explores the possibility of defining the semantic and natural language ‘sense’ 

of words from a network of lexical co-occurrences built from a large data corpus. The 2 

major languages that this was tested for was the English and French languages.  

 

Semantic resources always prove to be useful in information retrieval and query 

expansion applications. The 3 main methods this is done is by is building a class of 

related words and not constraining ourselves in defining word sense strictly, using 

features in the word neighbourhood of a word and thirdly by deriving the word senses 

from the co occurrence pairs in a data corpus. 
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1.3.4  “Semantic Co-occurrence Networks”. 

 

This paper delves into the issue of correctly inferring the real sense of a word used in a 

context. Most often, there is a trigger word that is used to extrapolate to the word sense 

used in the context. Previous work in this field led to the conclusion that statistical co 

occurrence networks built for a large corpus would help in disambiguating the word 

sense for a word that could in fact have a different meaning for each context in which it 

was used. The paper describes 3 methods used to correctly disambiguate the sense of 

words. First, a neural network is used on a small collection of words, which does a good 

job assigning the correct meaning to the word. Second, the neural network is applied to a 

large corpus such as a dictionary of words, which certainly has more than one meaning 

for most of the words. Third, the same technique is used on a quarter million words of 

parallel French and English. 

 

The basic working of the neural network is based on a set of real number values. One is 

the activation level associated with each node, and a bias. Then, there is a real number 

called weight associated with each edge in the neural network. Based on these values, the 

errors for each output term are calculated, which are then used to check whether the word 

sense was correctly assigned to the word that was fed in as input to the neural network. 

In applying the neural network to the dictionary, the training was conducted based on the 

financial and geographical meanings of the word ‘bank’, and certain context words that 

co occurred at least 3 times with the word ‘bank’. In the third technique, pairs of English 
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words were mapped to their French translations. When a pair mapped to the same 

translation more then 85% of the time, the co occurrence was marked as significant. 

The conclusion from these experiments was that using neural networks makes it possible 

to generate correct senses of words in small to medium corpora.  

 

1.3.5  “Conceptual Grouping in Word Co-occurrence Networks”. 

 

This paper describes a technique called conceptual grouping, which automatically 

distinguishes between the real word senses submitted in a user query, and then sorts the 

documents returned by that particular query. This can help users find what they want 

when a query is submitted and it improves the precision of results returned. Instead of 

providing users with results that seem too many and confusing to consider, it would be 

better to get results that are tailored to the specific query of the user. 

 

The technique shown in this paper is that if a word is entered as a query, all semantically 

related words in that word’s co-occurrence network are checked. The technique also uses 

broad ‘groups’ of ‘concepts’ under which most or all of the words come under. These 

concepts within ‘groups’ as they are called, can have over lapping words in them.  

Now, when a particular word has been entered as a query, we check the co-occurrence for 

that word and also check which words from the co-occurrence network occur in the same 

conceptual group under which the query word is. Empirically, it has been found that 

words that co-occur within the same conceptual group will be linked more strongly 

semantically in the co-occurrence network as well. That way, the real sense of a word 
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could be gauged by checking under which conceptual group that word and the words in 

its co-occurrence networks occur.  
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2.  Approach: 

 

2.1 

The approach the Fluminense team chose was purely based on a interactive brainstorming 

session.  

 

Our approach was to use a fairly simple concept which would make it easy to search and 

traverse a network when a particular word is used as a query. For building this concept 

into a program we started out with the 2 gram data files. This 2 gram data is formatted in 

such a way that there are 2 character strings per line with the frequency count of many 

times they occur in pairs. Each of these words is separated by a tab white space character.  

 

2.2 

A simple yet powerful hash function has been used in our program. The hash function 

used is an integral part of our tree creation and search algorithm as it reduces the time for 

traversal exponentially as compared to other traversal methods. We have used the “djb2” 

hashing function along with another core component of the “Lau” hash function. Both 

these hash functions are computationally similar, and are ideally suited for working with 

strings. As the time needed to come up with a custom hash function is very large when 

working within academic time constraints, it was decided to make use of existing hash 

functions. 
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It was first tested on the 1 gram data, just to check the total amount of collisions that 

occur when the same hash value is generated for different strings. When the hash 

function was tried on the 1 gram data, it was found that the maximum hash value was 

around 600 and the minimum value was 350. These figures were obtained on the premise 

that the first hash table would be around 10000 elements.  

 

The first word on each line from the bi-gram data would be hashed. 

Upon reaching the first word in the bi-gram data, the hash function is applied that returns 

the position in the hash table that will hold the structure for the first word.  

Then the second word is also hashed and this time again the hash function returns the 

actual element number in the array where the second word's hash value is stored.  

 

Each element in the hash table for the second string will have a binary search tree 

associated with it.  

The use of binary search tree was chosen based on the following factors: 

1. It takes log(n) time to search the depth of the tree. 

2. The bi-gram data is already sorted so we could easily arrange and insert incoming new 

data into the child nodes in the correct order. 

3. In order traversal is a highly efficient operation on Binary Search Trees. 
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2.2.1) Unigram Cut: 

Unigram cut is the minimum number of times each unigram in a bigram must have 

occurred for a bigram to be included in the network.                               

 

2.2.2) Associativity Cut: 

Assoc cut is the minimum “Association score” that a pair of words must have in order to 

be included in a path.  

The Association score of a bigram  

“W1W2” = Freq(W1,W2)/Freq(W1)*Freq(W2) 

 

2.3 

After the hash function has been applied on the first string in the bi-gram data file, the 

‘root node’ of the binary search tree is created. This root node contains the ‘occurrence 

node’.  

 

The occurrence node is the second string that occurs with the first string in the bi-gram 

data file. Now there can be multiple combinations of second different second strings with 

the first string. For this purpose an array is dynamically declared for storing the initial 

second strings that occur with the first string. 

 

The ‘occurrence node’ data structure has the following main elements. It has the initial 

second word that occurs with the first string. It also has the frequency count of those 2 

strings as provided to us in the bi-gram data file. Then it has 2 flags called ‘front’ and 
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‘back’. These flags are used to indicate if the combination of the 2 words also occurs in 

reverse order in the bi-gram data file. 

 

The operations of inserting into the nodes are fairly straightforward. The data element to 

be inserted is compared with the root element. If it is alphabetically smaller than the root 

element, then it becomes the left child of the root, else if it is bigger than the root 

element, it is made the right child of the root element.  

The tree creation operation (part of the main network creation operation) 

 

This function in the program is passed 2 strings on an entire line from the bi-gram data 

file as the input parameters. The line has 2 strings and the frequency of their occurrence.  

 

Example: 

Bi-gram data line:  

 

Bombay Tanvir  3457 

Rambo  Rocket  285 

Rocket  Rambo  76 

Tanvir   Pilaf  970 

 

Whatever data is passed to the function, the following operations will take place. 

The first word in the bi-gram file line is searched in the root node. 
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2.3.1 

Architecture & Conceptual View 
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2.3.2 
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A diagram of the concept used in the base data structure. 
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2.3.4 
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2.3.5 
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2.3.6 
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2.3.7 
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2.3.8 
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2.3.9 
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2.3.10 
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2.1.11 
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2.1.13 
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2.1.14 
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2.4 

In our example, the word Bombay is searched in the root node. 

 

Case 1: The word is not present in the root node. 

 

The first string of the data in the bi-gram line is searched in the root node. The second 

word on the line is used as input in the second hash function. If the first word is not 

present as a child of the root node, then it is inserted into the root node. Then the front 

flag of the root is set to 1 and the back flag is set to 0. The frequency count of the root is 

set to the weight associated with the line. And the second string of the occurrence node 

for the received data is set to the second word on the passed line. 

 

 

Example 1: 

Root node does not have any word. 

 

Line passed from bi-gram data file:  Bombay Tanvir  3457 

 

The word ‘Bombay’ will be searched in the root node, and when the search returns a null 

value, it is inserted into the root node. Front flag becomes 1 and back flag becomes 0. 

The word ‘Tanvir’ is stored as the second string of the occurrence root of the root node. 
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2.5 

 

Case 2: The string is a word string in the root node’s occurrence root, and  

 

a) It is the first string associated with the occurrence root.  

 

Here the word will not show up in the search of the occurrence root.  

In that case, an insert operation takes place. The node is inserted either as a left child or 

right child of the parent node, under the array position returned by hashing the incoming 

data string. 

 

b) It is another string associated with the occurrence root. 

 

The word shows up in a search of the occurrence root. In that case, just set the front flag 

of this incoming data string as 1 and frequency on the bi-gram data line as the line 

weight. 

 

After the first word has been detailed into the tree, the second word string on the bi-gram 

data file is evaluated. 

 

Now we use a type of reverse operation. The same procedure is performed for the reverse 

root provided. The second word on the line is searched in the reverse root.  
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2.6 

 

Case 1: It is not present in the reverse root node. 

 

It is inserted by an insert operation into the node. This time the front flag is set to 0 and 

the back flag is set to 1. The second string of this reverse root’s occurrence root is set to 

the actual first string on the bi-gram data file line. 

 

Case 2: The string is a word string in the reverse root node’s occurrence root, and  

 

a) It is the first string associated with the occurrence root.  

 

Here the word will not show up in the search of the reverse root’s occurrence root. In that 

case, an insert operation takes place. The node is inserted either as a left child or right 

child of the parent node, under the array position returned by hashing the incoming data 

string. 

 

b) It is another string associated with the occurrence root. 

The word shows up in a search of the occurrence root. In that case, just the front back of 

this incoming data string is set as 1. 

 

 

 



 33 

2.7 

 

In the end of the alpha stage, the storing of the network created is handled thus: 

 

The main program passes the locations of the first hash table entries along with the 

processor IDs. The path of the current working directory is obtained. Then the new 

directories are created per each processor and named with the processor IDs. Every 

processor creates one file per hash table entry (named as the hash table entry number). 

The contents of this file include the entire binary search tree attached to that particular 

hash table entry. 

 

This convention has been used keeping in mind our initial approach to go about the beta 

stage and requirements and the input to the same. 
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2.8 

 

To perform the operation of searching for the target string and any strings occurring in 

front of that string or behind it, we first have to traverse the co-occurrence file and store 

the strings that are connected. 

 

The following operations take place to create the data structure for traversing the nodes:  

1. Read the target-list file one line at a time.  

2. Store the target string and the path-length.  

3. Create a data structure for storing all the connected strings to the target string, both in 

front and back.  

4. Pass the target string to the search function which searches all the connected strings to 

the target string both in front and back and returns back a connected link list of all the 

strings and the total count of the front and back connected strings.  

5. Data structure is created for storing all the connected string, and then traverse the data 

structure one node at a time and pass the substrings connected to the target string to the 

search function.  

6. This again gives back all the connected strings to the substring passed to the search 

function in the form of a connected link-list. This process is done for both the front and 

back connected substrings to the target string.  

7. The process of passing the strings to the search function is limited by the path-length. 

Once the path-length is reached we have the connected string structure of the target 
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string, both in front and back directions. This structure spawns to the specified path-

length.  

8. Now I pass the address of the target string to the Display function which recursively 

prints the entire structure of substrings connected to the target string, both in front and 

back directions along with there frequency count.   

 

1. Open the target-list file to read the target-strings and path lengths one at a time. 

2. Passing the target-file to the “Read_display_connected_strings”. 

3. Passing the target-string to the search function which returns all the substrings 

connected to it in the front and back directions along with the count of the number of 

front connected strings and number of back connected strings. 

4. Using the path-length as the limit to create the target-string and connected-strings 

network, both in the front and back directions. 

5. Once the target-string network is created the start node is passed to the display network 

which prints the target-string and all its substrings in the front and back directions along 

with there frequency count. Since we have created the network keeping the path-length 

limit, we just need to print the entire target-string network which will never exceed the 

path-length. This is one advantage of creating a target-string network.  

6. Once the printing is done, flushing all the memory used for creating the target string 

network and taking new target-string and path-length as input from the target-list file and 

repeat step 1-4. 
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2.9 

 

When given a string, and a certain path length, we search the forward and backward paths 

from that particular string and return the tree strutures of specified pathlength for each 

string in the forward and backward connected components of the original input string. 

 

The input given to this phase is the string for which front and back connections need to 

be searched (and the specified pathlength).  

The output from this phase would be:  

list of strings containing the front connected strings, when forward connections are 

requested and/or list of strings containing the back connected strings when backward 

connections are requested. 

 

This program searches the previously created hash table and binary search tree used to 

create the co-occurrence network.  

 

Algorithm: 

1. Hash the input string with the hashing function used for creation of the network 

2. Search the input string in the binary search tree root at the hash location 

3. Once the string is found,traverse the connected strings hash table and  

   binary search tree. 

4. Inorder traversal is used for the traversal and it adds the connected strings in the 

   linked list structure to be returned. 
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As the network is distributed among the processors, this function also requires to  

gather the connected strings on other processors. For this it sends the input string  

to other processors. 

 

Other processors implement the same algorithm and send the connected strings to this  

parent process using MPI communication. 

 

When searching for the particular string among the co-occurrence nodes of other 

processes, if the front flag is set , we search the front connections of the input strings, 

otherwise, the back connections are traversed. 
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2.10 

 

In the beta stage, we would check for the existence of disjoint networks within the data 

corpus. The disjoint network files are generated based on the number of disjoint networks 

found within the test data corpus.  

 

Different processors create disjoint network files based on the data which they have 

worked on. The convention used is that we would have 2 types of files for the disjoint 

networks. The first file would be the actual disjoint network nodes file. In such a file, 

each separate node would be put on a new line. This file would have only nodes and not 

any figures related to the number of nodes or edges.  

 

The second type of file would be the “stat” file. This file would contain the number of 

nodes and edges in the disjoint networks. It has only 2 figures placed on new lines. The 

first number is the number of nodes and the second number is the number of edges. 

Now, in order to the calculate the total number of disjoint networks among all the 

processors, we would have to check if any word occurs in common between any of the 

multiple number of disjoint network files.  

 

The naming convention for the “nodes” and “stat” file is as follows: 

Both files will have the first 3 characters of the name as numbers and the last 3 characters 

also as numbers. The first 3 numbers would be the processor that generated that particular 

disjoint network nodes and corresponding ‘stat’ file.  
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The last 3 numbers would be the actual file number to differentiate how many files are 

generated by each processor. 

 

Examples:  

1. 000network000, 000stat000: this means that the files were generated by process 0 and 

it is the first disjoint network node and ‘stat’ file. 

2. 000network002, 000stat002: this means that the files were generated by process 0 and 

it is the third disjoint network node and ‘stat’ file. 

3. 001network001, 001stat001: this means that the file was generated by process 1 and it 

is the second disjoint network node and ‘stat’ file. 

 

For the processes and file numbers, our numbering index would start at zero. 

The procedure is accomplished as follows: first we traverse each “stat” file and storing 

the number of nodes and edges occurring in the corresponding “network nodes” file. 

A total network count variable records the total number of networks initially when all the 

processes create any disjoint networks that existed in their share of the data. 

 

At the end of the disjoint network traversal stage, the total number of disjoint networks 

would be calculated among all the processes.  

A simple algorithm used to calculate the total number of disjoint networks is as follows 

 

1. Each file is compared, string (node) for string (node), to check if any node occurs in 

common among those files.  
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2. If at all any node is in common, that means those particular disjoint networks and in 

fact connected and not disjoint. 

3. Once that happens, the total count of disjoint networks would reduce.  

4. Then, the number of edges from each disjoint network would have to be added to get 

the total number of edges in the newly combined disjoint network. 

5. The total number of nodes in the newly combined, larger disjoint network would be the 

sum of nodes from both the smaller disjoint networks minus the one node that occurred in 

common. 

 

When this algorithm is tried, the output would be the total number of disjoint networks 

along with the final count of nodes and edges among the individual disjoint networks. 
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2.11 

 

The unigram cut operation: This operation has been specifically optimized to run on only 

2 processors in order to better utilize the memory resources while the other procedures 

are executing.  

 

The operation will proceed as follows: 

 

The ordered unigram file “vocab’ is used for this procedure. The file is cut into 2 parts 

and each part of the file is passed to one process. The hash function is used and for each 

value of the hash table, a binary tree is created for the particular string whose hash value 

corresponds to the hash table array. Using the hash function optimizes memory utilization 

and also speeds up the procedure considerably. A string is passed on the procedure that is 

supposed to search that particular string for occurrence in the unigram file. This search 

string is then passed onto the 2 separate processes. 

 

The string is searched in both the processes and if the string is found the unigram weight 

is returned otherwise ‘-1’ is returned, indicating that the input search string is not found.   

Association cut-off takes the weights returned by the unigram search function and takes 

the bigram weight from the bigram file read function and calculates the association 

scores.  
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3. Resources 

 

Hardware:  

Blade cluster provided by the Minnesota Supercomputing Institute.                                      

Processor type: Two dual-core 2.6 GHz AMD Opteron processors per node. 

Memory: 8 GB per node (7 GB usable)  

 

Software: 

The Blade cluster uses the 2.6.5-7.244-smp version of the GNU/Linux operating system. 

 

Language and Libraries: 

The entire code has been written in the C programming language. The only libraries used 

are the MPI (Message Passing Interface) library and the OpenMP library for use in 

parallel programming. 
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4. Performance 

4.1 

Timing in seconds:  Alpha Stage readings 

  Processors 16 8 

File Numbers       

0     93.65 

1     63.945 

2     16.98 

3     16.19 

4     18.62 

5     88.4 

6     260.129 

7     11.85 

8     11.6 

9     11.169 

10   33.015 11.51 

11   8.968 11.76 

12   12.43 11.39 

13   13.73   

14   13.66   

15   24.26   

16   12.91   

17   12.92   

18   9.6   

19   8.23441   

20   11.108004   

21   8.842743   

22   8.198028   

23   8.489847   

24   9.076095   

25   8.447796   

26   10.484789   

27   8.056134   

28   7.860083   

29   11.223973   

30   9.218522   

31   4.758889   
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We were able to test the code on differing number of single input files and also on the 

entire bi-gram data set. Due to the bc queue being busy during the writing of this section, 

not all the results could be posted. 

 

Beta Stage Results 

Unigram Cut off Network Creation Timing: 

18.057747 seconds for the unigram cut off limit of 200 

 

Unigram Cut off Network Search Time per string: 

0.499875 seconds 

 

Searching a target string for front and back connections to a user specified path: 

1.667915 seconds (searching a string of specified length as 2) 
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4.2  Benchmarking: 

End to End timing results 

4.2.1  Network Creation & File I/O 

 

Number of 2gram-files read Number of 2gram-files read Number of Processors 

(Execution Time in sec) 

1 12(40.586217) 

 

16(35.940412) 

2 12(82.321112) 

 

16(49.712990) 

 

3 12(82.321112) 

 

16(59.467261) 

 

4 12(119.915033) 

 

16(76.846659) 

 

5q 15(125.675043) 

 

18(109.447602) 

 

29 64(975.952314) 

 

100(1231.427653) 

 

30 64(1015.643072) 

 

100(1289.246602) 

 

31 64(1064.134553) 

 

100(1338.421798) 
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4.2.2  Searching, Display & File I/O 

Number of 

Processors 

Number of 

Files 

Target String Path Length Searching+Display 

time(sec) 

 

10 5 ‘Plagiarism’ 2 568.124860 

 

16 5 ‘Plagiarism’ 2 102.300228 

 

10 5 ‘HELLO’ 2 779.989307 

 

16 5 ‘HELLO’ 2 34.778504 

 

64 26 ‘ubiquitous’ 2 141.253852 
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4.3  Memory Requirements: 

 

Network Creation:  Memory Requirements per processor 

 

 

 

Structures Used    Bytes Required 

 

1. One line record     106 

 

2. Occurrence node    77 

 

3. Node     1213 

 

4. Connected strings    36 

 

____________________________________________________________________ 

 

Memory Calculations: 

 

Hash table memory    = 1000 * 4  = 4000 bytes 

Unique Node (Reverse)   = 5000000 * 1213 = 6065000000 bytes 

Max Unique Nodes (Per File)  = 50000*1213  = 60650000 bytes 

Occurrence Nodes   = 10000000 * 33 = 330000000 bytes 

One Line Record    = 10000000 * 106 = 1060000000 bytes 

 

Total      = 7545954000 bytes 

 

________________________________________________________________________ 

 

Total Maximum Memory Required Per Processor    = 7.02772 GB 
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Unigram Creation:  Memory Requirements  

 

Structures Used    Bytes Required 

 

1. Unigram-node    57 

________________________________________________ 

 

Memory Calculations: 

 

Hash table memory    = 50000 * 4  = 200000 bytes 

Node Memory    = 57 * 13588391 = 774538287 bytes 

Extra Allocation   = 150 + 41 + 8  = 199 bytes  

 

Total      = 774738486 bytes 

 

________________________________________________________________________ 

 

Total Maximum Memory Required    = 0.774 GB 
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5. Testing Methodologies: 

 

In the early development stage, we considered the SGI Altix cluster as another option, 

however the queue seemed to slow on that system too. 

 

We attempted to move the code to the Calhoun cluster on the MSI systems but it was 

extremely slow. Also it has only a single job submittal queue and hence we decided to 

opt out of working on the Calhoun cluster. 

In the beta stage, we have performed extensive testing on experimental data and in most 

cases, concrete conclusions could be drawn from trial data and single files of test 2 gram 

data.  

 

Due to all the constraints mentioned above, we ran all our tests on the IBM Blade cluster. 

 

Initial runs of our code produced a very persistent memory allocation error that was 

somehow corrupting the memory chunks of the run time heap. After steady debugging 

and making slight modifications in the way we handled pointers and certain data 

structures, the errors were resolved. Some files had to be broken down into multiple 

functions stored in separate C files. 

 

The initial method the team used was a brute force method for time bounds testing for the 

sequential version of the code. However, what ended up being produced were errors in 
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reading the largest files of the data set. We kept varying the size of the first hash table 

and second hash table. This was showing us that varying amounts of lines were read 

depending on the sizes of the hash table.  

 

We initially tried the sequential program on the largest file of the bi-gram collection. This 

was the “2gm-0000” data file. All the other files of the bi-gram data collection, except 

“2gm-0000”, “2gm-0001” and “2gm-0006” were stopping halfway through the program 

execution. The most common error was due to memory corruption. 
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6. Conclusion 

 

As of this stage, our team is able to read the entire bi-gram data set and push the data into 

files. We are able to perform sequential as well as parallel file input output operations. 

However, some modifications are being performed as we are still facing some errors and 

irregularities in the file output. One reason could be the bc queue returning inconsistent 

output or no output when jobs are submitted and unusually high wait times.  
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